292 research outputs found

    Climate and Constructions : International Conference 24 and 25 October 2011, Karlsruhe, Germany / Competence Area "Earth and Environment" (KIT Scientific Reports ; 7618)

    Get PDF
    The two-day international conference "Climate and Constructions" covered the topics "Building Science", "Construction Chemistry", "Urban Climate" and "Materials Technology and Construction Techniques". Beside invited lectures and a workshop part about the interactions between climate and the construction sector, there was an open call to submit abstracts. The abstracts were assessed by an international advisory board

    Formation and Maintenance of a Polynya in the Weddell Sea

    Get PDF

    Assessment of Surface-Layer Coherent Structure Detection in Dual-Doppler Lidar Data Based on Virtual Measurements

    Get PDF
    Dual-Doppler lidar has become a useful tool to investigate the wind-field structure in two-dimensional planes. However, lidar pulse width and scan duration entail significant and complex averaging in the resulting retrieved wind-field components. The effects of these processes on the wind-field structure remain difficult to investigate with in situ measurements. Based on high resolution large-eddy simulation (LES) data for the surface layer, we performed virtual dual-Doppler lidar measurements and two-dimensional data retrievals. Applying common techniques (integral length scale computation, wavelet analysis, two-dimensional clustering of low-speed streaks) to detect and quantify the length scales of the occurring coherent structures in both the LES and the virtual lidar wind fields, we found that, (i) dual-Doppler lidar measurements overestimate the correlation length due to inherent averaging processes, (ii) the wavelet analysis of lidar data produces reliable results, provided the length scales exceed a lower threshold as a function of the lidar resolution, and (iii) the low-speed streak clusters are too small to be detected directly by the dual-Doppler lidar. Furthermore, we developed and tested a method to correct the integral scale overestimation that, in addition to the dual-Doppler lidar, only requires high-resolution wind-speed variance measurements, e.g. at a tower or energy balance station.DFG/RA 617/19-

    Compound extremes in a changing climate - a Markov chain approach

    Get PDF
    Studies using climate models and observed trends indicate that extreme weather has changed and may continue to change in the future. The potential impact of extreme events such as heat waves or droughts depends not only on their number of occurrences but also on "how these extremes occur", i.e., the interplay and succession of the events. These quantities are quite unexplored, for past changes as well as for future changes and call for sophisticated methods of analysis. To address this issue, we use Markov chains for the analysis of the dynamics and succession of multivariate or compound extreme events. We apply the method to observational data (1951–2010) and an ensemble of regional climate simulations for central Europe (1971–2000, 2021–2050) for two types of compound extremes, heavy precipitation and cold in winter and hot and dry days in summer. We identify three regions in Europe, which turned out to be likely susceptible to a future change in the succession of heavy precipitation and cold in winter, including a region in southwestern France, northern Germany and in Russia around Moscow. A change in the succession of hot and dry days in summer can be expected for regions in Spain and Bulgaria. The susceptibility to a dynamic change of hot and dry extremes in the Russian region will probably decrease

    Soil moisture impacts on convective indices and precipitation over complex terrain

    Get PDF
    The impact of soil moisture on convective precipitation, convective indices, surface energy balance components, and near-surface meteorological variables is analysed for seven intensive observation periods of the Convective and Orographically induced Precipitation Study (COPS) conducted in summer 2007 using a non-hydrostatic limited-area atmospheric prediction model. The control runs are compared to sensitivity experiments under dry (-25 %) and wet (+25 %) initial soil moisture conditions. In the wet experiment, surface fluxes produce moister and cooler boundary layers with increased equivalent potential temperatures. Furthermore, the lifting condensation level and the level of free convection are lowered for all analysed regions, even under different synoptic controls. The comparison of boundary-layer and mid-tropospheric forcing regimes reveal that the impact of soil moisture on the atmosphere is not systematically higher for boundary-layer forcing. Whereas the Bowen ratio exhibits a clear dependence on soil moisture conditions, the impact on precipitation is complex and strongly depends on convective inhibition. A considerable, but non-systematic dependence of convective precipitation on soil moisture exists in the analysed complex orography. The results demonstrate the high sensitivity of numerical weather prediction to initial soil moisture fields

    Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART

    Get PDF
    Common ragweed (Ambrosia artemisiifolia L.) is a highly allergenic plant that is spreading throughout Europe. Ragweed pollen can be transported over large distances by the wind. Even low pollen concentrations of less than 10 pollen m−3 can lead to health problems in sensitive persons. Therefore, forecasting the airborne concentrations of ragweed pollen is becoming more and more important for public health. The question remains whether distant pollen sources need to be considered in reliable forecasts. We used the extended numerical weather prediction system COSMO-ART to simulate the release and transport of ragweed pollen in central Europe. A pollen episode (September 12–16, 2006) in north-eastern Germany was modeled in order to find out where the pollen originated. For this purpose, several different source regions were taken into account and their individual impact on the daily mean pollen concentration and the performance of the forecast were studied with the means of a 2 × 2 contingency table and skill scores. It was found that the majority of the pollen originated in local areas, but up to 20% of the total pollen load came from distant sources in Hungary. It is concluded that long-distance transport should not be neglected when predicting pollen concentrations

    The Karlsruhe temperature time series since 1779

    Get PDF
    This paper presents the long-term Karlsruhe temperature series re-digitized and reconstructed from handwritten manuscripts from 1779 to 1875 archived in various libraries. Despite great efforts, data from some periods remained missing in the manuscript departments so that the main Karlsruhe series remained partially fragmented. Combined with historic climate records available in the archive of German Weather Service (DWD), the entire series until 2008, when the official Karlsruhe station was relocated to Rheinstetten, is one of the longest climate series available for Germany. The series includes various observational parameters on a daily or even sub-daily basis converted into SI units or contemporary units. The focus of this paper is on the temperature series and presents some first statistical analyses to demonstrate the additional benefit of possessing unique long-term instrumental climate data on a sub-daily basis. The entire temperature series was homogenized with respect to consistent observation times and to an urban boundary site. It is shown that the width of the distribution function quantified from constructed daily maximum and minimum temperature has substantially broadened in the summer months, but not during winter or the entire year. The number of summer and hot days has substantially increased in the last 30–50 years, while the number of frost and ice days has decreased. Summer or hot days as well as heat waves were very rare before 1920, being unrepresentative of a period mainly unaffected by climate change. Singularities of the climate system, such as the (cold) SchafskĂ€lte in June or the (warm) Hundstage in July/August, are clearly shown in most periods. The (cold) Ice Saints in May, however, have a high frequency only in the coldest period between 1870 and 1960; they are hardly detectable in most of the preceding years. Temperature statistics show that the severity of late spring frosts has gradually increased during the entire record mainly as a result of later frost occurrences

    Regional Impact of Snow‐Darkening on Snow Pack and the Atmosphere During a Severe Saharan Dust Deposition Event in Eurasia

    Get PDF
    Light-absorbing impurities such as mineral dust can play a major role in reducing the albedo of snow surfaces. Particularly in spring, deposited dust particles lead to increased snow melt and trigger further feedbacks at the land surface and in the atmosphere. Quantifying the extent of dust-induced variations is difficult due to high variability in the spatial distribution of mineral dust and snow. We present an extension of a fully coupled atmospheric and land surface model system to address the impact of mineral dust on the snow albedo across Eurasia. We evaluated the short-term effects of Saharan dust in a case study. To obtain robust results, we performed an ensemble simulation followed by statistical analysis. Mountainous regions showed a strong impact of dust deposition on snow depth. We found a mean significant reduction of −1.4 cm in the Caucasus Mountains after 1 week. However, areas with flat terrain near the snow line also showed strong effects despite lower dust concentrations. Here, the feedback to dust deposition was more pronounced as increase in surface temperature and air temperature. In the region surrounding the snow line, we found an average significant surface warming of 0.9 K after 1 week. This study shows that the impact of mineral dust deposition depends on several factors. Primarily, these are altitude, slope, snow depth, and snow cover fraction. Especially in complex terrain, it is therefore necessary to use fully coupled models to investigate the effects of mineral dust on snow pack and the atmosphere

    Characteristics and evolution of diurnal foehn events in the Dead Sea valley

    Get PDF
    This paper investigates frequently occurring foehn in the Dead Sea valley. For the first time, sophisticated, high-resolution measurements were performed to investigate the horizontal and vertical flow field. In up to 72 % of the days in summer, foehn was observed at the eastern slope of the Judean Mountains around sunset. Furthermore, the results also revealed that in approximately 10 % of the cases the foehn detached from the slope and only affected elevated layers of the valley atmosphere. Lidar measurements showed that there are two main types of foehn. Type I has a duration of approximately 2–3 h and a mean maximum velocity of 5.5 m s−1^{-1} and does not propagate far into the valley, whereas type II affects the whole valley, as it propagates across the valley to the eastern side. Type II reaches mean maximum wind velocities of 11 m s−1^{-1} and has a duration of about 4–5 h. A case study of a type II foehn shows that foehn is initiated by the horizontal temperature gradient across the mountain range. In the investigated case this was caused by an amplified heating and delayed cooling of the valley boundary layer in the afternoon, compared to the upstream boundary layer over the mountain ridge. The foehn was further intensified by the advection of cool maritime air masses upstream over the coastal plains, leading to a transition of subcritical to supercritical flow conditions downstream and the formation of a hydraulic jump and rotor beneath. These foehn events are of particular importance for the local climatic conditions, as they modify the temperature and humidity fields in the valley and, furthermore, they are important because they enhance evaporation from the Dead Sea and influence the aerosol distribution in the valley

    A process study on thinning of Arctic winter cirrus clouds with high‐resolution ICON‐ART simulations

    Get PDF
    In this study, cloud‐resolving simulations of a case study for a limited area of the hibernal Arctic were performed with the atmospheric modeling system ICON‐ART (ICOsahedral Nonhydrostatic‐Aerosol and Reactive Trace gases). A thorough comparison with data both from satellite as well as aircraft measurement is presented to validate the simulations. In addition, the model is applied to clarify the microphysical processes occurring when introducing artificial aerosol particles into the upper troposphere with the aim of modifying cirrus clouds in the framework of climate engineering. Former modeling studies investigating the climate effect of this method were performed with simplifying assumptions and much coarser resolution, reaching partly contradicting conclusions concerning the method's effectiveness. The primary effect of seeding is found to be a reduction of ice crystal number concentrations in cirrus clouds, leading to increased outgoing longwave radiative fluxes at the top of the atmosphere, thereby creating a cooling effect. Furthermore, a secondary effect is found, as ice crystals formed from the injected seeding aerosol particles lead to enhanced riming of cloud droplets within the planetary boundary layer. This effectively reduces the coverage of mixed‐phase clouds, thus generating additional cooling by increased upward longwave radiative fluxes at the surface. The efficacy of seeding cirrus clouds proves to be relatively independent from the atmospheric background conditions, scales with the number concentrations of seeding particles, and is highest for large aerosol particles
    • 

    corecore